45 Convegno Nazionale di Studi di Medicina Trasfusionale

Rimini | 29-31 maggio 2024

Anemia emolitica immunomediata e nuovi farmaci Fabrizio Vianello

UOC Ematologia

Dipartimento di Medicina

Azienda Ospedaliera Università di Padova

Red cell production and catabolism in states of normal or accelerated cell turnover

Kuter DJ. Blood 2022

45° Convegno Nazionale di Studi di Medicina Trasfusionale Rimini, 29-31 maggio 2024

Immune-mediated hemolytic anemia **Pathogenesis**

- caused by autoantibodies directed against erythrocyte self-antigens, with or without complement activation.
- estimated incidence 1-3 per 10⁵/year, prevalence of 17:100,000
- heterogeneous condition (from fully compensated to life-threatening)

		Autoantibody characteristics				
		Class	Optimal T of reaction (range)	Specificity	DAT positivity	In vivo hemolysis (RBC sequestration)
1. Warm AIHA	60-70%	IgG (possible complement fixation, IgG1 and IgG3)	37°C (0-40)	Rh system	lgG or lgG+ (weak) C	Extravascular (spleen)
2. Cold AIHA		\mathcal{O}	/ D	D)((
2a. Cold agglutinin disease (CAD)	20-25%	IgM (common complement fixation)	4°C (4-34)	l/i system	c	Intravascular and extravascular (liver/spleen)
2b. Paroxysmal Cold Hemoglobinuria (PCH)	1-5%	IgG (common complement fixation)	Reacts at 4°C and hemolyses at 37°C	P antigen	Positive Donath- Landsteiner test	Intravascular and extravascular
3. Mixed AIHA	5-10%	warm IgG and cold IgM	4°C and 37°C		lgG+high titer cold lgM	Extravascular/ Intravascular (spleen /liver)

Barcellini W. 2015; Berentsen S. 2015; Barcellini W. 2015; Berentsen S. 2016; Barcellini W; 2018; Berentsen S. Br J Haematol. 2018; Jaeger U, Blood Rev 2019.

45° Convegno Nazionale di Studi di Medicina Trasfusionale Rimini, 29-31 maggio 2024

Immune-mediated hemolytic anemia Warm-antibody vs Cold-antibody AIHA

Immune-mediated hemolytic anemia Major determinants of clinical severity of AIHA

- ✓ Autoantibody class, thermal amplitude
- ✓ Efficiency in activating complement
- ✓ Activity of immune system (spleen, liver and lymphoid organs)
- ✓ Efficacy of the bone marrow compensatory response

- Extravascular hemolysis: 17 ml RBCs/hr = 420 ml RBCs/24hr
- Intravascular hemolysis: 200ml RBCs in 1 hr

Immune-mediated hemolytic anemia Goals of therapy for wAIHA

- Normalization of hemoglobin is rarely required.

- Aim to stable Hgb level over 10g/dL, resolution of symptoms, and transfusion independence
- Avoid the side effects of corticosteroids, with chronic prednisone dosage never exceeding 5 mg/d
- Definition of response: an increase in Hgb by more than 2g/dL or normalization of Hgb without a biochemical resolution of hemolysis, along with an absence of transfusion for the last 7 days
- Complete response (CR): normalization of Hgb, no evidence of hemolysis (normal bilirubin, LDH, haptoglobin, and reticulocytes), and the absence of transfusions

Jäger U et al. Blood Rev. 2020

Immune-mediated hemolytic anemia Current treatment of wAIHA

- Steroids effective in 80% if cases but relapse in 50% within 1 year
- Rituximab: durable remission rate 70 % percent

Immune-mediated hemolytic anemia Current treatment of cold AIHA

- Patients with mild anemia or compensated hemolysis and no clinical symptoms do not benefit from treatment
- CAD should not be treated with corticosteroids
- Splenectomy is ineffective
- Rituximab: PR rate of \sim 50%, few CRs, median response duration of 6.5 to 11 months
- Rituximab + bendamustine: response rate at 78%, 53% CR at long term
- Complement inhibitors not effective for ischemic symptoms

Schöllkopf C et al. Leuk Lymphoma 2006; Berentsen S. et al. Blood 2004; Berentsen S. et al. Blood 2017 & 2020

WARM AIHA New agents

New agents for the treatment of autoimmune hemolytic anemia

Novel agents in treatment of wAIHA

Drug/Class	Mechanism	Indication	Study					
Monoclonal Antibodies								
Alemtuzumab	Anti-CD52	Secondary AIHA	Case reports					
Daratumumab	Anti-CD38	HSCT-AIHA	Case reports					
Ofatumumab	Anti-CD20	Secondary AIHA	Case reports					
lanalumab	Anti-BAFF	Primary of secondary wAIHA	Phase 3					
Povetacicept	Anti-APRIL/BAFF	Primary wAIHA, CAD, ITP	Phase 1b					
Obexelimab	Anti-CD19	Primary or secondary wAIHA	Phase 3					
B-cell receptor pathway and FcγR signaling inhibitors								
Ibrutinib	BTKI	Secondary AIHA	Case reports					
Rilzabrutinib	ВТКі	Primary, secondary wAIHA	Phase 2					
Venetoclax	Bcl2	Secondary AIHA	Case reports					
IgG-mediated Phagocytosis Inhibitors								
Fostamatinib	Syk inhibitor	wAIHA	Phase 2,3					
Sovleplenib	Syk inhibitor		Phase 2/3					
Nipocalimab	FcRn MoAB	wAIHA	Phase 2/3					
Orilanolimab	FcRn MoAB	wAIHA	Phase 2					
Complement inhibitors								
Annexion-005	C1q inhibitor	wAIHA, CAD	Phase 1/2					
Eculizumab	C5 inhibitor	CAD/Mixed AIHA	Case reports, Phase 2					
Pegcetacoplan	C3/C3b inhibitor	wAIHA, CAD	Phase 1/2					
Bortezomib	Proteosome Inhibitor	WAIHA, CAD	Case reports, Phase 2					

SPLEEN TYROSINE KINASE (SYK) INHIBITORS FOSTAMATINIB

Paik J. Drugs 2021

SPLEEN TYROSINE KINASE (SYK) INHIBITORS FOSTAMATINIB

Fostamatinib for the treatment of warm antibody autoimmune hemolytic anemia: Phase 2, multicenter, open-label study SOAR study

- 26 patients treated with fostamatinib at 150 mg BID
- Primary endpoint:Hb level of >10 g/dL and ≥2 g/dL the baseline Hb
- 21 of 24 patients (50%) achieved the primary endpoint
- Post-analysis ≥1.5 g/dL in Hb from baseline) met by 15 of 24 patients (63%)

SPLEEN TYROSINE KINASE (SYK) INHIBITORS FOSTAMATINIB

Phase 3, Randomized, Double-Blind, Placebo-Controlled, Global Study (FORWARD) of Fostamatinib for the Treatment of Warm Antibody Autoimmune Hemolytic Anemia

David J. Kuter, Caroline I. Piatek, Khalil Saikali, Wolfgang Dummer

- Approved for ITP April 17, 2018
- AIHA Orphan Drug designation
- FORWARD study is 24-week Phase 3 RCT (N=90)
- Primary endpoint: Hgb > 10 g/dL and ≥ 2 g/dL from baseline
- Overall response rate: 35.8% in fostamatinib group vs 26.7% in placebo group.
- Reanalysis: 33% in fostamatinib group vs 14.0% in placebo group. (Two patients removed from placebo group who did not have evidence of hemolysis)
- High placebo response rate observed (esp in Eastern Europeans)

Regions	Durable hemoglol		
Treatment group	Fostamatinib	Placebo	p-value
Overall population – prespecified analysis	16/45 (35.6%)	12/45 (26.7%)	P=0.398
Overall population, n (%) – reanalysis	15/45 (33.3%)	6/43 (14.0%)	P=0.0395
U.S., Canada, Australia, Western Europe – reanalysis	8/25 (32.0%)	0/28 (0)	P=0.021
Eastern Europe – reanalysis	7/20 (34.0%)	6/15 (40.0%)	NS

ANTI-CD38 ANTIBODIES DARATUMUMAB

Hb over time - Warm AIHA

FcRn Inhibition

Ling LE et al. Clin Pharmacol Ther. 2019; 105: 1031-1039. Patel DD, Bussel JB. J. Allergy Clin. Immunol. 2020; 146(3): 467-478.

FcRN INHIBITORS

Energy Trial in Warm Autoimmune Hemolytic Anemia (wAIHA): Design of a Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Safety of Nipocalimab, an FcRn Blocker

Irina Murakhovskaya, Bruno Fattizzo, Tarek Ebrahim, Kristen Sweet, Cathye Shu

- AIHA Orphan Drug designation
- Vivacity-MG: Phase 2 trial in myasthenia gravis substantial and rapid reductions in serum total and pathogenic IgG autoantibodies which were correlated statistically significantly with symptom improvement (P<0.0001).
- Open-label phase 2 UNITY trial positive results from the treatment of pregnant adults at high risk for severe hemolytic disease of the fetus and newborn (HDFN).
- ENERGY trial is 24-week Phase 2/3 RCT (N=111)
- Primary endpoint: durable response of improvement in Hgb
- Enrolment is ongoing.

Murakhovskaya I et al. *Blood*. 2022; 140 (suppl 1): 2443-2444. Murakhovskaya et al *EHA 2021, NORD 2021*. Figure provided by Author.

PI3Kδ INHIBITORS PARSACLISIB

PR, partial responders

CR, complete responders

Response Extension Period

Extension Period Visit

25 pts

- 16 pts (64%) wAIHA, 6 (24%) CAD, 3 (12%) mixed
 AIHA
- Overall response: CR in 8 pts (32%), PR in 16 pts (64%) from wk 6–12
- Among pts with wAIHA, 12 (75%) achieved PR
- Gr ≥3 AEs and SAEs (diarrhea, rash, psoriasis, CMV reactivation) were each reported in 9 pts (53%)
- 2 pts (12%) had TEAEs leading to parsaclisib discontinuation.

B-CELL ACTIVATING FACTOR - BAFF INHIBITION

 BAFF-mediated signaling needed for B cell maturation, proliferation and survival
 Elevated levels of BAFF have been detected in the serum of patients with various B-cell-mediated autoimmune disorders

IANALUMAB

- Monoclonal antibody against the BAFF receptor
- B cell depletion via direct lysis of B cells
- BAFF receptor blockade

POVETACICEPT

- Inhibition of BAFF and the proliferation inducing ligand April
- Reduces antibody-secreting cells

COLD AIHA New agents

Short course of bortezomib in anemic patients with relapsed cold agglutinin disease: a phase 2 prospective GIMEMA study

Giuseppe Rossi,¹ Doriana Gramegna,¹ Francesca Paoloni,² Bruno Fattizzo,³ Francesca Binda,³ Mariella D'Adda,¹ Mirko Farina,¹ Elisa Lucchini,⁴ Francesca Romana Mauro,⁵ Flavia Salvi,⁶ Monia Marchetti,⁷ Paola Fazi,² Francesco Zaja,⁴ and Wilma Barcellini³

- Single course of bortezomib (1.3 mg/sqm IV on days 1, 4, 8, 11)
- Four of 6 responding patients maintained the response after a median follow-up of 16 months
- One patient relapsed after 1 year and obtained a second remission with bortezomib
- All patients were alive at last follow-up except
 1 who died of septic shock during off treatment
- Median hemoglobin levels (g/L) before and after treatment were 85 and 114 in responding patients, and 88 and 92 in nonresponding patients

blood Effect of ibrutinib treatment on hemolytic anemia and acrocyanosis in cold agglutinin disease/cold agglutinin syndrome

Marit Jalink,^{1,2} Sigbjørn Berentsen,³ Jorge J. Castillo,⁴ Steven P. Treon,⁴ Marjan Cruijsen,⁵ Bruno Fattizzo,^{6,7} Ramona Cassin,⁶ Despina Fotiou,⁸ Efstathios Kastritis,⁸ Masja De Haas,^{9,10} Liesbeth E. M. Oosten,⁹ Henrik Frederiksen,¹¹ Andrea Patriarca,¹² Shirley D'Sa,¹³ and Josephine M.I. Vos^{2,10,14}

Time (months)

Jalink M. et al. Blood 2021

CONCLUSIONS – UNMET CLINICAL NEEDS

- Rituximab remains the drug with the longest response duration in both wAIHA and CAD experiences, and novel drugs struggle to compare it. (and rituximab can be repeated at 1–2-year intervals in case of relapse)
- Endpoint of treatment should be 'relapse free survival' or 'duration of response' as endpoints for evaluating treatment efficacy in modifying disease course.
- Many novel drugs need to be administered indefinitely and do not shut down autoimmunity
- The acute AIHA phase represents in fact an unmet clinical need, since it is marked by the highest rate of complications, need of ICU admission, and mortality, and rituximab is a relatively slow-acting agent.
- T-cell compartment still not a target.