5 Convegno Nazionale di Studi di Medicina Trasfusionale

Rimini | 29-31 maggio 2024

The value of large scale studies in blood donors: from randomised clinical trial to big data

Professor Emanuele Di Angelantonio

Human Technopole, Milan | University of Cambridge, UK

Il sottoscritto, in qualità di Relatore dichiara che

nell'esercizio della Sua funzione e per l'evento in oggetto, NON È in alcun modo portatore di interessi commerciali propri o di terzi; e che gli eventuali rapporti avuti negli ultimi due anni con soggetti portatori di interessi commerciali non sono tali da permettere a tali soggetti di influenzare le sue funzioni al fine di trarne vantaggio.

What is the need of large scale studies?

Provide compelling evidence for blood services both nationally and internationally on major issues related to blood donation.

Provide a more personalised service.

Build major bioresources involving donors as enduring research platforms.

NHSBT: the English blood service

Partnership between NHSBT and academia

Building bioresources to help address questions relevant to blood donors and the wider population

Large scale studies in blood donors

Large scale studies in blood donors

INTERVAL

- 50,000-person randomised controlled trial
- 2012 16 Optimum donation frequency for blood supplies and donor health

INTERVAL trial

What is the optimum time period between blood donations for safety and efficiency?

Pragmatic, randomised controlled trial embedded within NHSBT framework

Moore C et al, Trials 2014

INTERVAL: primary outcome, efficiency of blood donation

Di Angelantonio E et al, Lancet 2017

Blood donation, haemoglobin and ferritin during the INTERVAL trial

Kaptoge S et al, Lancet Haematol 2019

Large scale studies in blood donors

COMPARE study

What is the optimum test to screen haemoglobin levels in blood donors?

Testing strategy vs reference test: Bland– Altman plot

Bell S et al, Transf Medicine 2021

Testing strategy vs reference test

Bell S et al, Transf Medicine 2021

Large scale studies in blood donors

2019-22

- 1.4M-person cluster randomised trial
- Optimum strategy to prevent vasovagal reactions in blood donors

Clinical Significance of Vasovagal Reactions (VVRs)

Worldwide:14-70 moderate VVRs per 1000 donations, and 1.2-2.7 for severe reactions.

NHBST: ~25,000 VVRs between 2017/ 2018, of which ~3000 severe reactions.

 \blacktriangleright These reactions cause the greatest degree of donor injury.

Reduced likelihood of repeat donation by up to 50%

A cluster-randomised trial embedded in the English blood service

The STRIDES trial is a cluster-randomised trial of four interventions to prevent VVRs during routine blood donation:

- Isotonic hydration before donation (ISO), comparing 500ml isotonic drink vs current 500ml plain water;
- Time on donation chair after donation (CHA), comparing 3minutes rest on donation chair before standing vs current 2minutes;
- Modified applied muscle tension (AMT), comparing new AMT vs current practice of AMT;
- Psychosocial intervention (PSY), comparing provision of preparatory materials vs current practice of nothing.

STRategies to Improve Donor ExperienceS (STRIDES)

- 73 teams conducting routine blood collections (the entirety of NHSBT)
- November 2019 to November 2022
- Stepped-wedge, cross-over and factorial design Weekly recruitment (n1,381,520) 40000 35000 Number of donations 30000 25000 20000 15000 10000 5000 0 Fixed centre Mobile team 41 61 71 01 01 01 01 ά h → ά τ ά ά ά McMahon, Trials 2023 Week number

45° Convegno Nazionale di Studi di Medicina Trasfusionale *Rimini, 29-31 maggio 2024*

STRIDES: primary and secondary outcomes

Primary outcome

Outcome \						P-value	P-value
Intervention				OR (95	% CI)	separate	joint
On session VVR 1+	1		-				
Applied muscle tension	/ /	- H-B	•	1.05 (0.	.99, 1.10)	0.099	0.273
Psychosocial handout	711			0.97 (0.	.91, 1.03)	0.285	
Isotonic drink		-		0.98 (0	.95, 1.01)	0.138	
Chair time		- F		1.02 (0	.97, 1.06)	0.448	
Delaved VVR 1+		1					
Applied muscle tension				0.96 (0	.86. 1.07)	0.445	0.018
Psychosocial handout	J] H	-	- 1 1	0.99 (0.	.89, 1.11)	0.893	
sotonic drink	1	-		0.95 (0	.88. 1.03)	0.246	
Chair time	51		-	1.12 (1.	.03, 1.21)	0.007	
	$\left(\right) \right)$						
Delayed VVR 2+ Applied muscle tension	1	-		1 10 (0	91 1 34)	0 330	0 424
Psychosocial bandout				1.10 (0.	83 1 26)	0.000	0.424
sotonic drink		_		0.88 (0	76 1 03)	0.044	
Chair time				1.06 (0.	02 1 21	0.113	
				1.00 (0.	.92, 1.21)	0.414	
	1	-	1				
0.5	0.8	1	1.25	2			
	Odds r	atio (9	5% CI)				

McMahon, under review

Participants characteristics, consent and e-health records

Characteristics and consent

- □ Whole blood donors ≥18 years old, ~50% women
- Internet access and email address
- □ Wide geographical distribution
- Long-term, anonymised storage of blood samples
- Recall for targeted mechanistic (and other) studies

Linkage to health records

Deep molecular phenotyping

45° Convegno Nazionale di Studi di Medicina Trasfusionale Rimini, 29-31 maggio 2024

Blood Traits and Genomics

Largest genome-wide association study of blood cell traits to date >560K participants, >5000 new independent genetic variants, 29 blood cell phenotypes

Vuckovic D Cell 2020

Genetic determinants of iron homeostasis

46 new loci associating with biomarkers of iron homeostasis

Bell S Comms Bio 2021

Genomic determinants of restless legs syndrome

164 new risk loci in 116,647 cases and 1,546,466 controls

Schormair, *Lancet Neurol* 2017 Schormair, *Nat Gen in press*

Rimini, 29-31 maggio 2024

Blood groups genotyping

Development and validation of a universal blood donor genotyping platform

Significantly increases the number of available units for patients with multiple RBC antibodies

Combining multi-omics with genomics and clinical data at scale

Sun B, Nature 2018

Integrative analysis of plasma proteome and cardiometabolic diseases

Ritchie S, Nature Metabolism 2021

Atlas of genetic scores to predict multiomic traits

...back to trial improving safety of donation

0.0

Summary

- INTERVAL, COMPARE and STRIDES have provided compelling evidence for blood services on major issues related to blood donation and donor health, and have informed NHSBT policy and practice.
- Studies of genetic, other "omics" and biomarkers in donors will contribute to improving blood donation, blood transfusion products and practices.
- Large-scale studies and bioresources involving donors as enduring research platforms can provide resources that enable further research relevant both to blood donor health and the general population.

www.donorhealth-btru.nihr.ac.uk/

@DonorHealthBTRU

Blood and Transplant Research Unit in Donor Health and Behaviour at University of Cambridge

Blood and Transplant

