45^o Convegno Nazionale di Studi di Medicina Trasfusionale

Rimini | 29-31 maggio 2024

Difetti enzimatici e membranopatie nell'orizzonte trasfusionale Lucia De Franceschi

DIMI, Universita' di Verona & AOUI Verona

La sottoscritta, in qualità di Relatrice dichiara che

negli ultimi due anni ha avuto i seguenti rapporti anche di finanziamento con i soggetti portatori di interessi commerciali in campo sanitario:

- Research Grant: Agios, Bristol, Afimmune

- Advisory Board: Vertex, Roche, NovoNordisk, Vifor

Blood

Donor

Selection

Guidelines on Assessing Donor Suitability for Blood Donation

 Policies for the assessment of prospective donors should be developed by BTS in regions where there is a high incidence of enzymopathies and inherited red cell membrane defects

Accept

 Individuals with G6PD deficiency or other inherited red cell membrane defects, without a history of haemolysis; however, their blood is not suitable for intrauterine transfusion, neonatal exchange transfusion or for patients with G6PD deficiency

Defer permanently

 Individuals with G6PD deficiency or inherited red cell membrane defects, with a history of haemolysis

Blood donors and membranopathies or enzymopathies

Blood donors and membranopathies or enzymopathies

Hereditary stomatocytosis (HSt)

- Wide spectrum of inherited hemolytic disorders in which the red cell membrane cation permeability is increased (cation leak)
- The cation leak results in deregulation of cellular volume, which leads to morphological abnormality of RBCs (stomatocytes, RBCs with a stoma across the center, at peripheral blood smear)
- The clinical presentation of HSt is highly variable: variable expressivity
- Genetic and allelic heterogeneity

Normal Erythrocyte

Stomatocyte

Andolfo et al, Haematologica 2016

Hereditary stomatocytosis (HSt): classification

Non-syndromic

- •Dehydrated Hereditary Stomatocytosis (DHS1/DHS2) (PIEZO1; KCNN4)
- •Overhydrated Hereditary Stomatocytosis (OHS) (RHAG)
- •Cryohydrocytosis (Band 3)
- •Familial Pseudohyperkalemia (FP) (ABCB6)

Syndromic

- Stomatin deficient cryohydrocytosis with mental retardation, seizures, hepatosplenomegaly (GLUT1)
- Phytosterolemia non-leaky stomatocytosis with macrothrombocytopenia (ABCG5; ABCG8)
- Dehydrated Hereditary Stomatocytosis (DHS1) with perinatal edema and/or pseudohyperkalemia (*PIEZO1*)

PIEZO1 as causative of syndromic/nonsyndromic Dehydrated Hereditary Stomatocytosis (DHS)

Extracellular view

- Autosomal dominant hemolytic anemia associated with cation leak
- The two causative genes identified until now are *PIEZO1* and *KCNN4*
- It is a rare condition, but rather underdiagnosed. A recent study estimate an incidence of 1 case in 8000 adults -> linked to malaria resistance.

Iolascon A, Andolfo I, Russo R. BJH 2019; Andolfo et a. AJH 2017, Andolfo et al, AJH 2018

PIEZO1 as causative of syndromic/nonsyndromic Dehydrated Hereditary Stomatocytosis (DHS)

- The two causative genes identified until now are *PIEZO1* and *KCNN4*
- It is a rare condition, but rather underdiagnosed. A recent study estimate an incidence of 1 case in 8000 adults -> linked to malaria resistance.

Iolascon A, Andolfo I, Russo R. BJH 2019; Andolfo et a. AJH 2017, Andolfo et al, AJH 2018

Dehydrated Hereditary Stomatocytosis (DHS)

- DHS is a pleotropic syndrome characterized by variable phenotypes.
- Different tissues/cell types that express PIEZO1 may be involved in the pathophysiology of DHS.

Jankovsky N, et al AJH 2021; Andolfo et al. AJH 2018; Picard et al., Haem. 2019; Andolfo et al. Haematologica 2016; Andolfo et al. Blood 2013

Non-Syndromic HSt: Familial Pseudohyperkalemia

- Dominantly inherited genetic trait
- temperature-dependent, in vitro, loss of K⁺ cation from red cells
- Plasma [K+] was increased when measured in blood stored at or below body temperature
- HSt patients show alterations in MCV
- Missense mutations in *ABCB6* gene were identified in FP

Iolascon A, Andolfo I, Russo R. BJH 2019; Andolfo et a. AJH 2017; Andolfo et al, AJH 2013

		ABCB6 patients FP
Number of patients (%)		11 (15.1)
Gender (female/male)		10 (90.9)/1 (9.1)
Onset of symptoms (years)		$\begin{array}{c} 42.5 \pm 6.6 \\ (40.5; 8) \end{array}$
Age of diagnosis (years)		47.1 ± 5.6 (43.5; 8)
Blood count		
	Ref range ^c	
RBC (10 ⁶ /µL)	3.9-5.6	$\begin{array}{c} \textbf{3.6} \pm \textbf{0.4} \text{ (3.8;} \\ \textbf{11)} \end{array}$
Hb (g/dL)	11.0-16.0	$\begin{array}{c} 13.5 \pm 0.4 \\ (13.1; 11) \end{array}$
Hct (%)	33.0-45.0	42.6 ± 1.3 (42.0; 11)
MCV (fL)	70.0-91.0	$\begin{array}{c} 101.3 \pm 2.3 \\ \textbf{(100.2; 11)} \end{array}$
MCH (pg)	23.0-33.0	31.1 ± 0.6 (31.4; 11)
MCHC (g/dL)	23.0-33.0	33.2 ± 0.9 (32.5; 11)
Retics count (x10 ³ /µL)		140.3 ± 35.7 (140.3; 2)
Retics %	0.5-2.0	2.9 ± 1.2 (2.9; 2)

Non-Syndromic HSt: Familial Pseudohyperkalemia

- Dominantly inherited genetic trait
- temperature-dependent, *in vitro*, loss of K⁺ cation from red cells
- Plasma [K+] was increased when measured in blood stored at or below body temperature
- HSt patients show alterations in MCV
- Missense mutations in *ABCB6* gene were identified in FP

Iolascon A, Andolfo I, Russo R. BJH 2019; Andolfo et a. AJH 2017; Andolfo et al, AJH 2013

		ABCB6 patients FP
Number of patients (%)		11 (15.1)
Gender (female/male)		10 (90.9)/1 (9.1)
Onset of symptoms (years)		$\begin{array}{c} 42.5 \pm 6.6 \\ (40.5; 8) \end{array}$
Age of diagnosis (years)		47.1 ± 5.6 (43.5; 8)
Blood count		
	Ref range ^c	
RBC (10 ⁶ /µL)	3.9-5.6	3.6 ± 0.4 (3.8; 11)
Hb (g/dL)	11.0-16.0	$\begin{array}{c} \textbf{13.5} \pm \textbf{0.4} \\ \textbf{(13.1; 11)} \end{array}$
Hct (%)	33.0-45.0	42.6 ± 1.3 (42.0; 11)
MCV (fL)	70.0-91.0	$\begin{array}{c} 101.3 \pm 2.3 \\ \textbf{(100.2; 11)} \end{array}$
MCH (pg)	23.0-33.0	31.1 ± 0.6 (31.4; 11)
MCHC (g/dL)	23.0-33.0	33.2 ± 0.9 (32.5; 11)
Retics count (x10 ³ /µL)		140.3 ± 35.7 (140.3; 2)
Retics %	0.5-2.0	2.9 ± 1.2 (2.9; 2)

ABCB6 variants screening in blood donors' population

- Variants in **ABCB6** gene are present in **healthy subjects** and in **blood donor population** •
- Storage of FP blood causes a significant increase in blood K+ levels • ->pediatric/neonatal care-> several cases of whole blood transfusion in infants leading to cardiac arrest and death have been described

Andolfo et al, Haematologica 2016

Genetic test for FP could be used

•

Blood donors and membranopathies or enzymopathies

Blood donors and membranopathies or enzymopathies

G6PD is the most common enzymatic defect, being present in most than 400 million of people

Cappellini MD & Fiorelli G The Lancet Hematology 371: 64, 2008

Omics study in Blood donors: REDS-III

Lantieri MC et al Transfusion 59: 79, 2019; D'Alessandro A et al Haematologica 106: 1290, 2021

Metabolic analysis of blood donors identified risk factors for extreme hemolyzer(s)

D'Alessandro A et al Haematologica 106: 1290, 2021

G6PD deficient blood donors display <u>higher oxidative</u> <u>hemolysis</u>, <u>lower glutathione and PPP activation</u>, resulting in reduced GSH and increased lipidperoxidation

Exploring red cells from blood donors with G6PD deficiency

Leukoreduced RBCs from blood donor with G6PD deficiency display 24 hrs PTR and impaired antioxidant machinery

- Decrease 24 hrs post transfusion recovery (PTR) compared to healthy subjects (AS-3 preservation)
- Reduced activation of PPP in fresh RBCs vs healthy erythrocytes
- Increased biliverdin, consistent with the reduction in NADPH driven conversion of bilirubin
- Lower GSH levels during storage compared to healthy RBCs, which positively correlate with PTR

Blood donors with G6PD Mediterranean variant display normal storage hemolysis compared to healthy donors

Italian blood donors with G6PD Mediterranean variant show

- ① MCV and ① reticulocyte count compared to healthy subjects
- No differences in Hct and Hb compared to healthy controls
- No difference in storage hemolysis between G6PD deficient and healthy blood donors

G6PD deficient RBCs display increased <u>erythroid</u> <u>microparticle (MPs)</u> formation <u>and PS+ RBCs</u> <u>during blood processing and during storage</u> compared to healthy subjects

Blood transfusion product containing MPs are associated with **posttransfusion complications such as thrombosis or ALI**

Matte A et al Antioxidants 2021; Noomuna P et al. Br J Haematol doi: 10.1111/bjh.16671, 2020; Ferru E et al Blood 117: 5998, 2011; Pantaleo A et al Biochem J 418: 359, 2009; Noulsri E et al Lab Med 54: 6-12, 2023; Tzounakas VL et al Front Med 5: 16, 2018

Impact on patient outcomes of transfused RBCs from blood donors with G6PD deficiency

Increased total bilirubin and markers of hemolysis from 6 to 60 hours after transfusion of G6PD deficient RBCs

Renzato AMN et al Transfusion Med Review 28: 7, 2014; Francis O et al JCI 130: 2270, 2020

Are there special condition(s) to be take into consider when G6PD deficient RBCs are transfused in adult patients?

Poor capacity to circulate upon transfusion of G6PD RBCs in <u>patients</u> with SCD and acute clinical manifestations such as VOCs

WHO: blood donor screening when the prevalence of G6PD deficiency 3-5% or higher

Karafin MS et al Curr Opin Hematol 25: 494, 2018; Sagiv E et al AJH 93: 630, 2018; Francis O et al JCI 130: 2270, 2020

Limitations of the analyzed studies

In transfusion studies:

- Old studies
- Poor quality (e.g. different preservation solutions) and poor design
- Lack of standardization in identification of RBCs as G6PD deficient

In the metabolomic studies:

- the analysis of post transfusion recovery was only at 24 hours
- G6PD deficiency was sustained by variant(s) different from the Mediterranean one.
- Lack of knowledge whether oxidative hemolysis might be predictive of clinical outcomes

RBCs from G6PD deficient blood donor: risk populations

Vascular endothelial cells

- Intrauterine transfusion
- Premature neonates
- Neonatal exchange transfusion
- Patients with G6PD deficiency

New possible categories of patients:

- SCD patients during acute VOCs
- Extracorporeal circulation
- severely burned patients

Conclusions and Open Questions

- Consider screening for <u>non syndromic hereditary</u> <u>stomatocytosis (ABCB6)</u> to avoid possible severe complication in **pediatric/neonatal care**
- Growing evidence of decrease efficiency of RBCs from blood donors with G6PD deficiency (e.g. 24 hrs post transfusion recovery (PTR) and lower GSH levels compared to healthy subjects)
- New studies to evaluate the impact of G6PD Mediterranean variant on RBC metabolome under blood bank condition
- Identification of new risk population requiring G6PD screening based on the metabolomic data.

Investigators

- Federti E, Siciliano A, Riccardi V-University of Verona, Verona; Italy
- Recchiuti A- University of Chieti, Chieti, Italy
- Brugnara C and Sherhan CN- Harvard Medical School, Boston, MA (USA)
- A Iolascon, R Russo, I Andolfo Univetrsity Federico II, Naples, Italy
- El Nemer W- INSERM- Marseille, France

